Galerkin eigenvector approximations

نویسنده

  • Christopher A. Beattie
چکیده

How close are Galerkin eigenvectors to the best approximation available out of the trial subspace? Under a variety of conditions the Galerkin method gives an approximate eigenvector that approaches asymptotically the projection of the exact eigenvector onto the trial subspace—and this occurs more rapidly than the underlying rate of convergence of the approximate eigenvectors. Both orthogonal-Galerkin and Petrov-Galerkin methods are considered here with a special emphasis on nonselfadjoint problems, thus extending earlier studies by Chatelin, Babuška and Osborn, and Knyazev. Consequences for the numerical treatment of elliptic PDEs discretized either with finite element methods or with spectral methods are discussed. New lower bounds to the sep of a pair of operators are developed as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element-Galerkin Approximation of the Eigenvalues and Eigenvectors of Selfao\joint Problems

Refined estimates for finite element or, more generally, Galerkin approximations of the eigenvalues and eigenvectors of selfadjoint eigenvalue problems are presented. More specifically, refined results on the asymptotic behavior of the eigenvalue and eigenvector errors are proved. Both simple and multiple eigenvalues are treated.

متن کامل

m at h . SP ] 6 M ay 1 99 8 Galerkin Eigenvector Approximations ∗

How close are Galerkin eigenvectors to the best approximation available out of the trial subspace ? Under a variety of conditions the Galerkin method gives an approximate eigenvector that approaches asymptotically the projection of the exact eigenvector onto the trial subspace – and this occurs more rapidly than the underlying rate of convergence of the approximate eigenvectors. Both orthogonal...

متن کامل

On estimators for eigenvalue/eigenvector approximations

We consider a large class of residuum based a posteriori eigenvalue/eigenvector estimates and present an abstract framework for proving their asymptotic exactness. Equivalence of the estimator and the error is also established. To demonstrate the strength of our abstract approach we present a detailed study of hierarchical error estimators for Laplace eigenvalue problems in planar polygonal reg...

متن کامل

Alternatives to the Rayleigh Quotient for the Quadratic Eigenvalue Problem

We consider the quadratic eigenvalue problem λ2Ax+ λBx+Cx = 0. Suppose that u is an approximation to an eigenvector x (for instance, obtained by a subspace method) and that we want to determine an approximation to the corresponding eigenvalue λ. The usual approach is to impose the Galerkin condition r(θ, u) = (θ2A+ θB +C)u ⊥ u, from which it follows that θ must be one of the two solutions to th...

متن کامل

Jacobi-Davidson Methods for Symmetric Eigenproblems

1 Why and how The Lanczos method is quite eeective if the desired eigenvalue is either max or min and if this eigenvalue is relatively well separated from the remaining spectrum, or when the method is applied with (A ? I) ?1 , for some reasonable guess for an eigenvalue. If none of these conditions is fulllled, for instance the computation of a vector (A ? I) ?1 y for given y may be computation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2000